visualization
plot_full_shape_robustness_analysis(robustness_analysis_df)
Function to build a combined plot of all the metrics with and without the success trajectory filtering. The metrics used are 'converged', 'steps_taken', 'discounted_rewards', 'extra_steps', and 't_min_over_t'
Parameters:
Name | Type | Description | Default |
---|---|---|---|
robustness_analysis_df
|
DataFrame
|
The pandas dataframe to plot the full analysis on. |
required |
Source code in olfactory_navigation/visualization.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
plot_shape_robustness_performance(robustness_analysis_df, metric='converged', success_only=False, ax=None)
Function to visualize the performance according to some metric for each multiplier on the horizontal and vertical axes. The metrics that can be chosen are among 'converged', 'steps_taken', 'discounted_rewards', 'extra_steps', or 't_min_over_t'.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
robustness_analysis_df
|
DataFrame
|
The analysis dataframe from which to plot the comparison plot. |
required |
metric
|
converged or steps_taken or discounted_rewards or extra_steps or t_min_over_t
|
The metric to be used to compare the performance between different multiplier combinations. |
= 'converged'
|
success_only
|
bool
|
Whether to use the results filtered only to the successful trajectories. |
False
|
ax
|
Axes
|
A matplotlib axis on which to plot the comparison plot. If not provided, a new one will be created. |
None
|
Source code in olfactory_navigation/visualization.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|