test_setups
analyse_scale_robustness(all_histories, multipliers)
Function to generate an analysis of a set of simulation tests with different multipliers applied in the environment. It returns a pandas dataframe summarizing the results for each multiplier pairs. The results analyzed are the following:
- convergence
- steps taken
- discounted rewards
- extra steps taken (compared to a minimum path)
- t min over t (a ratio of how optimal the path taken was)
For each result, the mean, standard deviation along with the mean and standard deviation of the successful trajectories are recorded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
all_histories
|
list[SimulationHistory]
|
A list of all the simulation histories to summarize |
required |
multipliers
|
ndarray
|
An array of the multiplier pairs used (for the y multiplier then the x multiplier) |
required |
Returns:
Name | Type | Description |
---|---|---|
df |
DataFrame
|
The analysis dataframe. |
Source code in olfactory_navigation/test_setups.py
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|
analyse_shape_robustness(all_histories, multipliers)
Function to generate an analysis of a set of simulation tests with different multipliers applied in the environment. It returns a pandas dataframe summarizing the results for each multiplier pairs. The results analyzed are the following:
- convergence
- steps taken
- discounted rewards
- extra steps taken (compared to a minimum path)
- t min over t (a ratio of how optimal the path taken was)
For each result, the mean, standard deviation along with the mean and standard deviation of the successful trajectories are recorded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
all_histories
|
list[SimulationHistory]
|
A list of all the simulation histories to summarize |
required |
multipliers
|
ndarray
|
An array of the multiplier pairs used (for the y multiplier then the x multiplier) |
required |
Returns:
Name | Type | Description |
---|---|---|
df |
DataFrame
|
The analysis dataframe. |
Source code in olfactory_navigation/test_setups.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
run_all_starts_test(agent, environment=None, time_shift=0, time_loop=True, horizon=1000, initialization_values={}, reward_discount=0.99, print_progress=True, print_stats=True, use_gpu=False)
Function to run a test with all the available starting positions based on the environment provided (or the environmnent of the agent).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
agent
|
Agent
|
The agent to be tested |
required |
environment
|
Environment
|
The environment to run the simulations in. By default, the environment linked to the agent will used. This parameter is intended if the environment needs to be modified compared to environment the agent was trained on. |
None
|
time_shift
|
int or ndarray
|
The time at which to start the olfactory simulation array. It can be either a single value, or n values. |
0
|
time_loop
|
bool
|
Whether to loop the time if reaching the end. (starts back at 0) |
True
|
horizon
|
int
|
The amount of steps to run the simulation for before killing the remaining simulations. |
1000
|
initialization_values
|
dict
|
In the case the agent is to be initialized with custom values, the paramaters to be passed on the initialize_state function can be set here. |
{}
|
reward_discount
|
float
|
How much a given reward is discounted based on how long it took to get it. It is purely used to compute the Average Discount Reward (ADR) after the simulation. |
0.99
|
print_progress
|
bool
|
Wheter to show a progress bar of what step the simulations are at. |
True
|
print_stats
|
bool
|
Wheter to print the stats at the end of the run. |
True
|
use_gpu
|
bool
|
Whether to run the simulations on the GPU or not. |
False
|
Returns:
Name | Type | Description |
---|---|---|
hist |
SimulationHistory
|
A SimulationHistory object that tracked all the positions, actions and observations. |
Source code in olfactory_navigation/test_setups.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
run_n_by_cell_test(agent, cell_width=10, n_by_cell=10, environment=None, time_shift=0, time_loop=True, horizon=1000, initialization_values={}, reward_discount=0.99, print_progress=True, print_stats=True, use_gpu=False)
Function to run a test with simulations starting in different cells across the available starting zones. A number n_by_cell determines how many simulations should start within each cell (the same position can be chosen multiple times).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
agent
|
Agent
|
The agent to be tested |
required |
cell_width
|
int
|
The size of the sides of each cells to be considered. |
10
|
n_by_cell
|
int
|
How many simulations should start within each cell. |
10
|
environment
|
Environment
|
The environment to run the simulations in. By default, the environment linked to the agent will used. This parameter is intended if the environment needs to be modified compared to environment the agent was trained on. |
None
|
time_shift
|
int or ndarray
|
The time at which to start the olfactory simulation array. It can be either a single value, or n values. |
0
|
time_loop
|
bool
|
Whether to loop the time if reaching the end. (starts back at 0) |
True
|
horizon
|
int
|
The amount of steps to run the simulation for before killing the remaining simulations. |
1000
|
initialization_values
|
dict
|
In the case the agent is to be initialized with custom values, the paramaters to be passed on the initialize_state function can be set here. |
{}
|
reward_discount
|
float
|
How much a given reward is discounted based on how long it took to get it. It is purely used to compute the Average Discount Reward (ADR) after the simulation. |
0.99
|
print_progress
|
bool
|
Wheter to show a progress bar of what step the simulations are at. |
True
|
print_stats
|
bool
|
Wheter to print the stats at the end of the run. |
True
|
use_gpu
|
bool
|
Whether to run the simulations on the GPU or not. |
False
|
Returns:
Name | Type | Description |
---|---|---|
hist |
SimulationHistory
|
A SimulationHistory object that tracked all the positions, actions and observations. |
Source code in olfactory_navigation/test_setups.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
test_scale_robustness(agent, environment=None, time_shift=0, time_loop=True, horizon=1000, initialization_values={}, reward_discount=0.99, step_percentage=20, min_percentage=20, max_percentage=200, multipliers=None, use_gpu=False, print_progress=True, print_stats=True, save=True, save_folder=None, save_analysis=True)
Function to test the robustness of an agent in a environment where the scale of the environment's shape is altered by some percentage.
A list of multipliers will be constructed from the min_percentage to 100% and up to max_percentage values with between each percentage step_percentage values. These percentage multipliers will be applied both in the x and y direction but cropped to the largest allowed multiplier along each axis.
This complete test consists in running from all possible start positions of the original environment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
agent
|
Agent
|
The agent to run the shape robustness test on. |
required |
environment
|
Environment
|
The environment to run the test in. By default, the environment linked to the agent will used. This parameter is intended if the environment needs to be modified compared to environment the agent was trained on. |
None
|
time_shift
|
int or ndarray
|
The time at which to start the olfactory simulation array. It can be either a single value, or n values. |
0
|
time_loop
|
bool
|
Whether to loop the time if reaching the end. (starts back at 0) |
True
|
horizon
|
int
|
The amount of steps to run the simulation for before killing the remaining simulations. |
1000
|
initialization_values
|
dict
|
In the case the agent is to be initialized with custom values, the paramaters to be passed on the initialize_state function can be set here. |
{}
|
reward_discount
|
float
|
How much a given reward is discounted based on how long it took to get it. It is purely used to compute the Average Discount Reward (ADR) after the simulation. |
0.99
|
step_percentage
|
int
|
Starting at 100%, how much of a percentage step to do to reach the min and max percentages. |
20
|
min_percentage
|
int
|
The minimum percentage of deformation to apply on the environment's odor plume. |
20
|
max_percentage
|
int
|
The maximum percentage of deformation to apply on the environment's odor plume. If this value is larger than the maximum shape allowed by the margins, the largest allowed percentage will be used. |
200
|
multipliers
|
list[int]
|
If provided, the step_percentage, min_percentage and max_percentage parameters will be ignored. A list of percentages of deformations to use to deforme the environment's odor plume. |
None
|
use_gpu
|
bool
|
Whether to use the GPU to speed up the tests. |
False
|
print_progress
|
bool
|
Whether to display a progress bar of how many test have been performed so far. |
True
|
print_stats
|
bool
|
Whether to display statistics at the end of each test. |
True
|
save
|
bool
|
Whether to save the results of each test to a save_folder.
Each test's result will be under the name 'test_env_mult- |
True
|
save_folder
|
str
|
The path to which the test results are saved.
If not provided, it will automatically create a new folder './results/ |
None
|
save_analysis
|
bool
|
Whether to save the analysis of the histories. It will be saved under a file named '_analysis.csv' in the save_folder. |
True
|
Returns:
Name | Type | Description |
---|---|---|
all_histories |
list[SimulationHistory]
|
A list of SimulationHistory instances. |
Source code in olfactory_navigation/test_setups.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
|
test_shape_robustness(agent, environment=None, time_shift=0, time_loop=True, horizon=1000, initialization_values={}, reward_discount=0.99, step_percentage=20, min_percentage=20, max_percentage=200, multipliers=None, use_gpu=False, print_progress=True, print_stats=True, save=True, save_folder=None, save_analysis=True)
Function to test the robustness of an agent in a environment where the odor plume's shape is altered by some percentage.
A list of multipliers will be constructed from the min_percentage to 100% and up to max_percentage values with between each percentage step_percentage values. These percentage multipliers will be applied both in the x and y direction but cropped to the largest allowed multiplier along each axis.
For each multiplier pair, a completed test will be run. This complete test consists in running from all possible start positions of the original environment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
agent
|
Agent
|
The agent to run the shape robustness test on. |
required |
environment
|
Environment
|
The environment to run the test in. By default, the environment linked to the agent will used. This parameter is intended if the environment needs to be modified compared to environment the agent was trained on. |
None
|
time_shift
|
int or ndarray
|
The time at which to start the olfactory simulation array. It can be either a single value, or n values. |
0
|
time_loop
|
bool
|
Whether to loop the time if reaching the end. (starts back at 0) |
True
|
horizon
|
int
|
The amount of steps to run the simulation for before killing the remaining simulations. |
1000
|
initialization_values
|
dict
|
In the case the agent is to be initialized with custom values, the paramaters to be passed on the initialize_state function can be set here. |
{}
|
reward_discount
|
float
|
How much a given reward is discounted based on how long it took to get it. It is purely used to compute the Average Discount Reward (ADR) after the simulation. |
0.99
|
step_percentage
|
int
|
Starting at 100%, how much of a percentage step to do to reach the min and max percentages. |
20
|
min_percentage
|
int
|
The minimum percentage of deformation to apply on the environment's odor plume. |
20
|
max_percentage
|
int
|
The maximum percentage of deformation to apply on the environment's odor plume. If this value is larger than the maximum shape allowed by the margins, the largest allowed percentage will be used. |
200
|
multipliers
|
list[int]
|
If provided, the step_percentage, min_percentage and max_percentage parameters will be ignored. A list of percentages of deformations to use to deforme the environment's odor plume. |
None
|
use_gpu
|
bool
|
Whether to use the GPU to speed up the tests. |
False
|
print_progress
|
bool
|
Whether to display a progress bar of how many test have been performed so far. |
True
|
print_stats
|
bool
|
Whether to display statistics at the end of each test. |
True
|
save
|
bool
|
Whether to save the results of each test to a save_folder.
Each test's result will be under the name 'test_env_y- |
True
|
save_folder
|
str
|
The path to which the test results are saved.
If not provided, it will automatically create a new folder './results/ |
None
|
save_analysis
|
bool
|
Whether to save the analysis of the histories. It will be saved under a file named '_analysis.csv' in the save_folder. |
True
|
Returns:
Name | Type | Description |
---|---|---|
all_histories |
list[SimulationHistory]
|
A list of SimulationHistory instances. |
Source code in olfactory_navigation/test_setups.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|