Skip to content

simulation

SimulationHistory

Class to record the steps that happened during a simulation with the following information being saved:

  • the positions the agents pass by
  • the actions the agents take
  • the observations the agents receive ('observations')
  • the time in the simulation process

Parameters:

Name Type Description Default
start_points ndarray

The initial points of the agents in the simulation.

required
environment Environment

The environment on which the simulation is run (can be different from the one associated with the agent).

required
agent Agent

The agent used in the simulation.

required
time_shift ndarray

An array of time shifts in the simulation data.

required
horizon int

The horizon of the simulation. i.e. how many steps can be taken by the agent during the simulation before he is considered lost.

required
reward_discount float

A discount to be applied to the rewards received by the agent. (eg: reward of 1 received at time n would be: 1 * reward_discount^n)

0.99

Attributes:

Name Type Description
start_points ndarray
environment Environment
agent Agent
time_shift ndarray
horizon int
reward_discount float
environment_dimensions int

The amount of dimensions of the environment.

environment_shape tuple[int]

The shape of the environment.

environment_source_position ndarray

The position of the odor source in the environment.

environment_source_radius float

The radius of the odor source in the environment.

environment_layer_labels list[str] or None

A list of the layer labels if the environment has layers.

agent_thresholds ndarray

An array of the olfaction thresholds of the agent.

n int

The amount of simulations.

start_time datetime

The datetime the simulations start.

actions list[ndarray]

A list of numpy arrays. At each step of the simulation, an array of shape n by 2 is appended to this list representing the n actions as dy,dx vectors.

positions list[ndarray]

A list of numpy arrays. At each step of the simulation, an array of shape n by 2 is appended to this list representing the n positions as y,x vectors.

observations list[ndarray]

A list of numpy arrays. At each step of the simulation, an array of shape n is appended to this list representing the n observations received by the agents.

reached_source ndarray

A numpy array of booleans saying whether the simulations reached the source or not.

done_at_step ndarray

A numpy array containing n elements that records when a given simulation reaches the source (-1 is not reached).

Source code in olfactory_navigation/simulation.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
class SimulationHistory:
    '''
    Class to record the steps that happened during a simulation with the following information being saved:

    - the positions the agents pass by
    - the actions the agents take
    - the observations the agents receive ('observations')
    - the time in the simulation process


    Parameters
    ----------
    start_points : np.ndarray
        The initial points of the agents in the simulation.
    environment : Environment
        The environment on which the simulation is run (can be different from the one associated with the agent).
    agent : Agent
        The agent used in the simulation.
    time_shift : np.ndarray
        An array of time shifts in the simulation data.
    horizon : int
        The horizon of the simulation. i.e. how many steps can be taken by the agent during the simulation before he is considered lost.
    reward_discount : float, default=0.99
        A discount to be applied to the rewards received by the agent. (eg: reward of 1 received at time n would be: 1 * reward_discount^n)

    Attributes
    ----------
    start_points : np.ndarray
    environment : Environment
    agent : Agent
    time_shift : np.ndarray
    horizon : int
    reward_discount : float
    environment_dimensions : int
        The amount of dimensions of the environment.
    environment_shape : tuple[int]
        The shape of the environment.
    environment_source_position : np.ndarray
        The position of the odor source in the environment.
    environment_source_radius : float
        The radius of the odor source in the environment.
    environment_layer_labels : list[str] or None
        A list of the layer labels if the environment has layers.
    agent_thresholds : np.ndarray
        An array of the olfaction thresholds of the agent.
    n : int
        The amount of simulations.
    start_time : datetime
        The datetime the simulations start.
    actions : list[np.ndarray]
        A list of numpy arrays. At each step of the simulation, an array of shape n by 2 is appended to this list representing the n actions as dy,dx vectors.
    positions : list[np.ndarray]
        A list of numpy arrays. At each step of the simulation, an array of shape n by 2 is appended to this list representing the n positions as y,x vectors.
    observations : list[np.ndarray]
        A list of numpy arrays. At each step of the simulation, an array of shape n is appended to this list representing the n observations received by the agents.
    reached_source : np.ndarray
        A numpy array of booleans saying whether the simulations reached the source or not.
    done_at_step : np.ndarray
        A numpy array containing n elements that records when a given simulation reaches the source (-1 is not reached).
    '''
    def __init__(self,
                 start_points: np.ndarray,
                 environment: Environment,
                 agent: Agent,
                 time_shift: np.ndarray,
                 horizon: int,
                 reward_discount: float = 0.99
                 ) -> None:
        # If only on state is provided, we make it a 1x2 vector
        if len(start_points.shape) == 1:
            start_points = start_points[None,:]

        # Fixed parameters
        self.n = len(start_points)
        self.environment = environment.cpu_version
        self.agent = agent.cpu_version
        self.time_shift = time_shift if gpu_support and cp.get_array_module(time_shift) == np else cp.asnumpy(time_shift)
        self.horizon = horizon
        self.reward_discount = reward_discount
        self.start_time = datetime.now()

        # Simulation Tracking
        self.start_points = start_points if gpu_support and cp.get_array_module(start_points) == np else cp.asnumpy(start_points)
        self.actions = []
        self.positions = []
        self.observations = []
        self.timestamps: list[datetime] = []

        self._running_sims = np.arange(self.n)
        self.reached_source = np.zeros(self.n, dtype=bool)
        self.done_at_step = np.full(self.n, fill_value=-1)

        # Environment and agent attributes
        self.environment_dimensions = self.environment.dimensions
        self.environment_shape = self.environment.shape
        self.environment_source_position = self.environment.source_position
        self.environment_source_radius = self.environment.source_radius
        self.environment_layer_labels = self.environment.layer_labels
        self.agent_thresholds = self.agent.thresholds

        # Other parameters
        self._simulation_dfs = None


    def add_step(self,
                 actions: np.ndarray,
                 next_positions: np.ndarray,
                 observations: np.ndarray,
                 reached_source: np.ndarray,
                 interupt: np.ndarray
                 ) -> None:
        '''
        Function to add a step in the simulation history.

        Parameters
        ----------
        actions : np.ndarray
            The actions that were taken by the agents.
        next_positions : np.ndarray
            The positions that were reached by the agents after having taken actions.
        observations : np.ndarray
            The observations the agents receive after having taken actions.
        reached_source : np.ndarray
            A boolean array of whether each agent has reached the source or not.
        interupt : np.ndarray
            A boolean array of whether each agent has to be terminated even if it hasnt reached the source yet.
        '''
        self._simulation_dfs = None

        # Time tracking
        self.timestamps.append(datetime.now())

        # Check if environment if layered and/or 3D
        layered = 0 if self.environment_layer_labels is None else 1

        # Handle case cupy arrays are provided
        if gpu_support:
            actions = actions if cp.get_array_module(actions) == np else cp.asnumpy(actions)
            next_positions = next_positions if cp.get_array_module(next_positions) == np else cp.asnumpy(next_positions)
            observations = observations if cp.get_array_module(observations) == np else cp.asnumpy(observations)
            reached_source = reached_source if cp.get_array_module(reached_source) == np else cp.asnumpy(reached_source)
            interupt = interupt if cp.get_array_module(interupt) == np else cp.asnumpy(interupt)

        # Actions tracking
        action_all_sims = np.full((self.n, (layered + self.environment_dimensions)), fill_value=-1)
        action_all_sims[self._running_sims] = actions
        self.actions.append(action_all_sims)

        # Next states tracking
        next_position_all_sims = np.full((self.n, self.environment_dimensions), fill_value=-1)
        next_position_all_sims[self._running_sims] = next_positions
        self.positions.append(next_position_all_sims)

        # Observation tracking
        observation_all_sims = np.full((self.n,), fill_value=-1, dtype=float)
        observation_all_sims[self._running_sims] = observations
        self.observations.append(observation_all_sims)

        # Recording at which step the simulation is done if it is done and whether it reached the source
        self.done_at_step[self._running_sims[reached_source | interupt]] = len(self.positions)
        self.reached_source[self._running_sims[reached_source]] = True

        # Updating the list of running sims
        self._running_sims = self._running_sims[~reached_source & ~interupt]


    def compute_distance_to_source(self) -> np.ndarray:
        '''
        Function to compute the optimal distance to the source of each starting point according to the optimal_distance_metric attribute.

        Returns
        -------
        distance : np.ndarray
            The optimal distances to the source point.
        '''
        point = self.start_points

        # Handling the case we have a single point
        is_single_point = (len(point.shape) == 1)
        if is_single_point:
            point = point[None,:]

        # Computing dist
        dist = None
        # if self.optimal_distance_metric == 'manhattan': # TODO Allow for other metrics to be used
        dist = np.sum(np.abs(self.environment_source_position[None,:] - point), axis=-1) - self.environment_source_radius

        if dist is None: # Meaning it was not computed
            raise NotImplementedError('This distance metric has not yet been implemented')

        return float(dist[0]) if is_single_point else dist


    @property
    def runs_analysis_df(self) -> pd.DataFrame:
        '''
        A Pandas DataFrame analyzing the results of the simulations.
        It aggregates the simulations in single rows, recording:

         - <axis>:              The starting positions at the given axis
         - optimal_steps_count: The minimal amount of steps to reach the source
         - converged:           Whether or not the simulation reached the source
         - reached_horizon:     Whether the failed simulation reached to horizon
         - steps_taken:         The amount of steps the agent took to reach the source, (horizon if the simulation did not reach the source)
         - discounted_rewards:  The discounted reward received by the agent over the course of the simulation
         - extra_steps:         The amount of extra steps compared to the optimal trajectory
         - t_min_over_t:        Normalized version of the extra steps measure, where it tends to 1 the least amount of time the agent took to reach the source compared to an optimal trajectory.
        '''
        # Get axes labels
        axes_labels = None
        if self.environment_dimensions <= 3:
            axes_labels = ['z', 'y', 'x'][-self.environment_dimensions:]
        else:
            axes_labels = [f'x{i}' for i in range(self.environment_dimensions)]

        # Dataframe creation
        df = pd.DataFrame(self.start_points, columns=axes_labels)
        df['optimal_steps_count'] = self.compute_distance_to_source()
        df['converged'] = self.reached_source
        df['reached_horizon'] = np.all(self.positions[-1] != -1, axis=1) & ~self.reached_source & (len(self.positions) == self.horizon)
        df['steps_taken'] = np.where(self.done_at_step >= 0, self.done_at_step, len(self.positions))
        df['discounted_rewards'] = self.reward_discount ** df['steps_taken']
        df['extra_steps'] = df['steps_taken'] - df['optimal_steps_count']
        df['t_min_over_t'] = df['optimal_steps_count'] / df['steps_taken']

        # Reindex
        runs_list = [f'run_{i}' for i in range(self.n)]
        df.index = runs_list

        return df


    @property
    def general_analysis_df(self) -> pd.DataFrame:
        '''
        A Pandas DataFrame analyzing the results of the simulations.
        Summarizing the performance of all the simulations with the following metrics:

         - converged:           Whether or not the simulation reached the source
         - reached_horizon:     Whether the failed simulation reached to horizon
         - steps_taken:         The amount of steps the agent took to reach the source, (horizon if the simulation did not reach the source)
         - discounted_rewards:  The discounted reward received by the agent over the course of the simulation
         - extra_steps:         The amount of extra steps compared to the optimal trajectory
         - t_min_over_t:        Normalized version of the extra steps measure, where it tends to 1 the least amount of time the agent took to reach the source compared to an optimal trajectory.

        For the measures (converged, steps_taken, discounted_rewards, extra_steps, t_min_over_t), the average and standard deviations are computed in rows at the top.
        '''
        df = self.runs_analysis_df

        # Analysis aggregations
        columns_to_analyze = ['converged', 'reached_horizon', 'steps_taken', 'discounted_rewards', 'extra_steps', 't_min_over_t']
        row_names = [['mean', 'standard_deviation', 'success_mean', 'success_standard_deviation']]
        general_analysis_data = [
            df[columns_to_analyze].mean(),
            df[columns_to_analyze].std(),
            df.loc[df['converged'], columns_to_analyze].mean(),
            df.loc[df['converged'], columns_to_analyze].std()
        ]

        return pd.DataFrame(data=general_analysis_data, index=row_names, columns=columns_to_analyze)


    @property
    def done_count(self) -> int:
        '''
        Returns how many simulations are terminated (whether they reached the source or not).
        '''
        return self.n - len(self._running_sims)


    @property
    def successful_simulation(self) -> np.ndarray:
        return self.reached_source


    @property
    def success_count(self) -> int:
        '''
        Returns how many simulations reached the source.
        '''
        return int(np.sum(self.successful_simulation))


    @property
    def simulations_at_horizon(self) -> np.ndarray:
        '''
        Returns a boolean array of which simulations reached the horizon.
        '''
        last_position_exists = np.all(self.positions[-1] != -1, axis=1)
        simulation_reached_horizon = (len(self.positions) == self.horizon)
        return last_position_exists & ~self.reached_source & simulation_reached_horizon


    @property
    def summary(self) -> str:
        '''
        A string summarizing the performances of all the simulations.
        The metrics used are averages of:

         - Step count
         - Extra steps
         - Discounted rewards
         - Tmin / T

        Along with the respective the standard deviations and equally for only for the successful simulations.
        '''
        success_sim_count = self.success_count
        failed_count = self.n - success_sim_count
        reached_horizon_count = int(np.sum(self.simulations_at_horizon))
        summary_str = f'Simulations reached goal: {success_sim_count}/{self.n} ({failed_count} failures (reached horizon: {reached_horizon_count})) ({(success_sim_count*100)/self.n:.2f}% success)'

        if success_sim_count == 0:
            return summary_str

        # Metrics
        df = self.general_analysis_df

        summary_str += f"\n - {'Average step count:':<35} {df.loc['mean','steps_taken'].item():.3f} +- {df.loc['standard_deviation','steps_taken'].item():.2f} "
        summary_str += f"(Successful only: {df.loc['success_mean','steps_taken'].item():.3f} +- {df.loc['success_standard_deviation','steps_taken'].item():.2f})"

        summary_str += f"\n - {'Extra steps:':<35} {df.loc['mean','extra_steps'].item():.3f} +- {df.loc['standard_deviation','extra_steps'].item():.2f} "
        summary_str += f"(Successful only: {df.loc['success_mean','extra_steps'].item():.3f} +- {df.loc['success_standard_deviation','extra_steps'].item():.2f})"

        summary_str += f"\n - {'Average discounted rewards (ADR):':<35} {df.loc['mean','discounted_rewards'].item():.3f} +- {df.loc['standard_deviation','discounted_rewards'].item():.2f} "
        summary_str += f"(Successful only: {df.loc['success_mean','discounted_rewards'].item():.3f} +- {df.loc['success_standard_deviation','discounted_rewards'].item():.2f})"

        summary_str += f"\n - {'Tmin/T:':<35} {df.loc['mean','t_min_over_t'].item():.3f} +- {df.loc['standard_deviation','t_min_over_t'].item():.2f} "
        summary_str += f"(Successful only: {df.loc['success_mean','t_min_over_t'].item():.3f} +- {df.loc['success_standard_deviation','t_min_over_t'].item():.2f})"

        return summary_str


    @property
    def simulation_dfs(self) -> list[pd.DataFrame]:
        '''
        A list of the pandas DataFrame where each dataframe is a single simulation history.
        Each row is a different time instant of simulation process with each column being:

         - time (of the simulation data)
         - [position] (z,) y, x  OR  x0, x1, ... xn
         - (layer)
         - [movement] (dz,) dy, dx  OR  dx0, dx1, ... dxn
         - o (pure, not thresholded)
         - reached_source (boolean)
        '''
        if self._simulation_dfs is None:
            self._simulation_dfs = []

            # Converting state, actions and observation to numpy arrays
            states_array = np.array(self.positions)
            action_array = np.array(self.actions)
            observation_array = np.array(self.observations)

            # Get axes labels
            axes_labels = None
            if self.environment_dimensions <= 3:
                axes_labels = ['z', 'y', 'x'][-self.environment_dimensions:]
            else:
                axes_labels = [f'x{i}' for i in range(self.environment_dimensions)]

            # Loop through the n simulations
            for i in range(self.n):
                length = self.done_at_step[i] if self.done_at_step[i] >= 0 else len(states_array)

                # Creation of the dataframe
                df = {}
                df['time'] = np.arange(length+1) + self.time_shift[i]

                # - Position variables
                for axis_i, axis in enumerate(axes_labels):
                    df[axis] = np.hstack([self.start_points[i, axis_i], states_array[:length, i, axis_i]])

                # - Action variables
                if self.environment_layer_labels is not None:
                    df['layer'] = np.hstack([[None], action_array[:length, i, 0]])

                for axis_i, axis in enumerate(axes_labels):
                    axis_i += (0 if self.environment_layer_labels is None else 1)
                    df['d' + axis]   = np.hstack([[None], action_array[:length, i, axis_i]])

                # - Other variables
                df['o'] = np.hstack([[None], observation_array[:length, i]])
                df['reached_source'] = np.hstack([[None], np.where(np.arange(1,length+1) == self.done_at_step[i], (1 if self.reached_source[i] else 0), 0)])

                # Append
                self._simulation_dfs.append(pd.DataFrame(df))

        return self._simulation_dfs


    def __add__(self, other_hist: 'SimulationHistory'):
        # Asserting the SimulationHistory objects are compatible
        assert self.horizon == other_hist.horizon, "The 'horizon' parameters must match between the two SimulationHistory objects..."
        assert self.reward_discount == other_hist.reward_discount, "The 'reward_discount' parameters must match between the two SimulationHistory objects..."
        assert self.environment_dimensions == other_hist.environment_dimensions, "The 'environment_dimensions' parameters must match between the two SimulationHistory objects..."
        assert self.environment_shape == other_hist.environment_shape, "The 'environment_shape' parameters must match between the two SimulationHistory objects..."
        assert self.environment_layer_labels == other_hist.environment_layer_labels, "The 'environment_layer_labels' parameters must match between the two SimulationHistory objects..."
        assert all(self.environment_source_position == other_hist.environment_source_position), "The 'environment_source_position' parameters must match between the two SimulationHistory objects..."
        assert self.environment_source_radius == other_hist.environment_source_radius, "The 'environment_source_radius' parameters must match between the two SimulationHistory objects..."
        assert all(self.agent_thresholds == other_hist.agent_thresholds), "The 'agent_thresholds' parameters must match between the two SimulationHistory objects..."

        # Combining arrays
        combined_start_points = np.vstack([self.start_points,
                                           other_hist.start_points])
        combined_time_shifts = np.hstack([self.time_shift,
                                          other_hist.time_shift])
        combined_reached_source = np.hstack([self.reached_source,
                                             other_hist.reached_source])
        combined_done_at_step = np.hstack([self.done_at_step,
                                           other_hist.done_at_step])

        combined_actions = []
        combined_positions = []
        combined_observations = []
        for step_i in range(max([len(self.actions), len(other_hist.actions)])):
            self_in_range = (step_i < len(self.actions))
            other_in_range = (step_i < len(other_hist.actions))
            combined_actions.append(np.vstack([self.actions[step_i] if self_in_range else np.full_like(self.actions[0], fill_value=-1),
                                               other_hist.actions[step_i] if other_in_range else np.full_like(other_hist.actions[0], fill_value=-1)]))
            combined_positions.append(np.vstack([self.positions[step_i] if self_in_range else np.full_like(self.positions[0], fill_value=-1),
                                                 other_hist.positions[step_i] if other_in_range else np.full_like(other_hist.positions[0], fill_value=-1)]))
            combined_observations.append(np.hstack([self.observations[step_i] if self_in_range else np.full_like(self.observations[0], fill_value=-1),
                                                    other_hist.observations[step_i] if other_in_range else np.full_like(other_hist.observations[0], fill_value=-1)]))

        # Creating the combined simulation history object
        combined_hist = SimulationHistory(start_points = combined_start_points,
                                          environment = self.environment,
                                          agent = self.agent,
                                          time_shift = combined_time_shifts,
                                          horizon = self.horizon,
                                          reward_discount = self.reward_discount)

        combined_hist.start_time = self.start_time
        combined_hist.actions = combined_actions
        combined_hist.positions = combined_positions
        combined_hist.observations = combined_observations
        combined_hist.reached_source = combined_reached_source
        combined_hist.done_at_step = combined_done_at_step

        return combined_hist


    def save(self,
             file: str | None = None,
             folder: str | None = None,
             save_analysis: bool = True,
             save_components: bool = False
             ) -> None:
        '''
        Function to save the simulation history to a csv file in a given folder.
        Additionally, an analysis of the runs can be saved if the save_analysis is enabled.
        The environment and agent used can be saved in the saved folder by enabling the 'save_component' parameter.

        Parameters
        ----------
        file : str, optional
            The name of the file the simulation histories will be saved to.
            If it is not provided, it will be by default "Simulations-<env_name>-n_<sim_count>-<sim_start_timestamp>-horizon_<max_sim_length>.csv"
        folder : str, optional
            Folder to save the simulation histories to.
            If the folder name is not provided the current folder will be used.
        save_analysis : bool, default=True
            Whether to save an additional csv file with an analysis of the runs of the simulation.
            It will contain the amount of steps taken, the amount of extra steps compared to optimality, the discounted rewards and the ratio between optimal trajectory and the steps taken.
            The means and standard deviations of all the runs are also computed.
            The file will have the same name as the simulation history file with an additional '-analysis' tag at the end.
        save_components : bool, default=False
            Whether or not to save the environment and agent along with the simulation histories in the given folder.
        '''
        assert (self.environment is not None) and (self.agent is not None), "Function not available, the agent and/or the environment is not set."

        # Handle file name
        if file is None:
            env_name = f's_' + '_'.join([str(axis_shape) for axis_shape in self.environment_shape])
            file = f'Simulations-{env_name}-n_{self.n}-{self.start_time.strftime("%Y%m%d_%H%M%S")}-horizon_{len(self.positions)}.csv'

        if not file.endswith('.csv'):
            file += '.csv'

        # Handle folder
        if folder is None:
            folder = './'

        if '/' not in folder:
            folder = './' + folder

        if not os.path.exists(folder):
            os.mkdir(folder)

        if not folder.endswith('/'):
            folder += '/'

        # Save components if requested
        if save_components:
            if (self.environment.saved_at is None) or (folder not in self.environment.saved_at):
                self.environment.save(folder=folder)

            if (self.agent.saved_at is None) or (folder not in self.agent.saved_at):
                self.agent.save(folder=folder)

        # Create csv file
        combined_df = pd.concat(self.simulation_dfs)

        # Adding other useful info
        padding = [None] * len(combined_df)
        combined_df['timestamps'] = [self.start_time.strftime('%Y%m%d_%H%M%S%f')] + [ts.strftime('%H%M%S%f') for ts in self.timestamps] + padding[:-(len(self.timestamps)+1)]
        combined_df['horizon'] = [self.horizon] + padding[:-1]
        combined_df['reward_discount'] = [self.reward_discount] + padding[:-1]

        environment_info = [
            self.environment.name,
            self.environment.saved_at,
            str(self.environment_dimensions), # int
            '_'.join(str(axis_size) for axis_size in self.environment_shape),
            '_'.join(str(axis_position) for axis_position in self.environment_source_position),
            str(self.environment_source_radius), # float
            '' if (self.environment_layer_labels is None) else '&'.join(self.environment_layer_labels) # Using '&' as splitter as '_' could be used in the labels themselves
        ]
        combined_df['environment'] = (environment_info + padding[:-len(environment_info)])

        # Converting the thresholds array to a string to be saved
        thresholds_string = ''
        if len(self.agent_thresholds.shape) == 2:
            thresholds_string = '-'.join(['_'.join([str(item) for item in row]) for row_i, row in enumerate(self.agent_thresholds[:,1:-1])])
        else:
            thresholds_string = '_'.join([str(item) for item in self.agent_thresholds])

        agent_info = [
            self.agent.name,
            self.agent.class_name,
            self.agent.saved_at,
            thresholds_string
        ]
        combined_df['agent'] = (agent_info + padding[:-len(agent_info)])

        # Saving csv
        combined_df.to_csv(folder + file, index=False)

        print(f'Simulations saved to: {folder + file}')

        if save_analysis:
            runs_analysis_file_name = file.replace('.csv', '-runs_analysis.csv')
            self.runs_analysis_df.to_csv(folder + runs_analysis_file_name)
            print(f"Simulation's runs analysis saved to: {folder + runs_analysis_file_name}")

            general_analysis_file_name = file.replace('.csv', '-general_analysis.csv')
            self.general_analysis_df.to_csv(folder + general_analysis_file_name)
            print(f"Simulation's general analysis saved to: {folder + general_analysis_file_name}")


    @classmethod
    def load_from_file(cls,
                       file: str,
                       environment: bool | Environment = False,
                       agent: bool | Agent = False
                       ) -> 'SimulationHistory':
        '''
        Function to load the simulation history from a file.
        This can be useful to use the plot functions on the simulations saved in succh file.

        The environment and agent can provided as a backup in the case they cannot be loaded from the file.

        Parameters
        ----------
        file : str
            A file (with the path) of the simulation histories csv. (the analysis file cannot be used for this)
        environment : bool or Environment, default=False
            If set to True, it will try to load the environment that was used for the simulation (if the save path is available).
            Or, an environment instance to be linked with the simulation history object.
        agent : bool or Agent, default=False
            If set to True, it will try to load the agent that was used for the simulation (if the save path is available).
            An agent instance to be linked with the simulation history object.

        Returns
        -------
        hist : SimulationHistory
            The loaded instance of a simulation history object.
        '''
        # Retrieving columns
        with open(file, 'r') as f:
            header = f.readline()
        columns = header.replace('\n','').split(',')

        # Setting the datatypes of columns
        column_dtypes = {col: float for col in columns}
        column_dtypes['time'] = int
        if 'layer' in columns:
            column_dtypes['layer'] = int
        column_dtypes['timestamps'] = str
        column_dtypes['environment'] = str
        column_dtypes['agent'] = str

        # Retrieving the combined dataframe
        combined_df = pd.read_csv(file, dtype=column_dtypes)

        # Retrieving horizon and reward discount
        horizon = int(combined_df['horizon'][0])
        reward_discount = combined_df['reward_discount'][0]

        # Retrieving environment
        if (not isinstance(environment, Environment)) and (environment == True):
            environment_name = combined_df['environment'][0]
            environment_path = combined_df['environment'][1]

            environment_path_check = (environment_path is not None) and (not np.isnan(environment_path))
            assert environment_path_check, "Environment was not saved at the time of the saving of the simulation history. Input an environment to the environment parameter or toggle the parameter to False."

            try:
                environment = Environment.load(environment_path)
            except:
                print(f'Failed to retrieve "{environment_name}" environment from memory')

        # Retrieving agent
        if (not isinstance(agent, Agent)) and (agent == True):
            agent_name = combined_df['environment'][0]
            agent_class = combined_df['environment'][1]
            agent_path = combined_df['environment'][2]

            agent_path_check = (agent_path is not None) and (not np.isnan(agent_path))
            assert agent_path_check, "Agent was not saved at the time of the saving of the simulation history. Input an agent to the agent parameter or toggle the parameter to False."

            try:
                class_instance = None
                for (class_name, class_obj) in inspect.getmembers(sys.modules[__name__], inspect.isclass):
                    if class_name == agent_class:
                        class_instance = class_obj
                        break
                agent = class_instance.load(combined_df['agent'][2])
            except:
                print(f'Failed to retrieve "{agent_name}" agent from memory')

        # Other attributes
        environment_dimensions = int(combined_df['environment'][2])
        environment_shape = tuple([int(axis_shape) for axis_shape in combined_df['environment'][3].split('_')])
        environment_source_position = np.array([float(pos_axis) for pos_axis in combined_df['environment'][4].split('_')])
        environment_source_radius = float(combined_df['environment'][5])
        layer_entery = combined_df['environment'][6]
        environment_layer_labels = (None if ((not isinstance(layer_entery, str)) or (len(layer_entery) == 0)) else layer_entery.split('&'))

        # Processing the threshold string
        thresholds_string = combined_df['agent'][3]
        if '-' in thresholds_string:
            rows_thresholds_string = thresholds_string.split('-')
            layer_thresholds = []
            for row in rows_thresholds_string:
                layer_thresholds.append([float(item) for item in row.split('_')])
            agent_thresholds = np.array(layer_thresholds)

        else:
            agent_thresholds = np.array([float(item) for item in thresholds_string.split('_')])

        # Columns to retrieve
        columns = [col for col in columns if col not in ['reward_discount', 'environment', 'agent']]

        # Checking how many dimensions there are
        has_layers = (((len(columns) - 5) % 2) == 1)
        dimensions = int((len(columns) - 5) / 2)

        # Recreation of list of simulations
        sim_start_rows = np.argwhere(combined_df[['reached_source']].isnull())[1:,0].tolist()
        n = (len(sim_start_rows) + 1)

        simulation_arrays = np.split(combined_df[columns].to_numpy(), sim_start_rows)
        simulation_dfs = [pd.DataFrame(sim_array, columns=columns) for sim_array in simulation_arrays]

        # Making a combined numpy array with all the simulations
        sizes = np.array([len(sim_array) for sim_array in simulation_arrays])
        max_length = sizes.max()
        paddings = max_length - sizes

        padded_simulation_arrays = [np.pad(sim_arr, ((0,pad),(0,0)), constant_values=-1) for sim_arr, pad in zip(simulation_arrays, paddings)]
        all_simulation_arrays = np.array(padded_simulation_arrays).transpose((1,0,2))

        # Timeshift
        time_shift = all_simulation_arrays[0,:,0].astype(int)

        # Gathering start states
        start_points = all_simulation_arrays[0,:,1:(1+dimensions)].astype(int)

        # Recreating action, state and observations
        positions = all_simulation_arrays[1:, :, 1:(1+dimensions)]
        actions = all_simulation_arrays[1:, :, (1+dimensions):((1+dimensions) + (1 if has_layers else 0) + dimensions)]
        observations = all_simulation_arrays[1:, :, ((1+dimensions) + (1 if has_layers else 0) + dimensions)]
        reached_source = np.array([(df['reached_source'][len(df)-1] == 1) for df in simulation_dfs])
        done_at_step = np.where((sizes-1 < horizon), sizes-1, -1)

        # Building SimulationHistory instance
        hist = cls.__new__(cls)

        hist.n = len(start_points)
        hist.environment = environment.cpu_version if isinstance(environment, Environment) else None
        hist.agent = agent.cpu_version if isinstance(agent, Agent) else None
        hist.time_shift = time_shift
        hist.horizon = horizon
        hist.reward_discount = reward_discount
        hist.start_time = datetime.strptime(combined_df['timestamps'][0], '%Y%m%d_%H%M%S%f')

        hist.start_points = start_points
        hist._running_sims = None

        hist.positions = [*positions]
        hist.actions = [*actions]
        hist.observations = [*observations]
        hist.reached_source = reached_source
        hist.done_at_step = done_at_step
        hist.timestamps = [datetime.strptime(ts, '%H%M%S%f') for ts in combined_df['timestamps'][1:max_length]]

        # Other attributes
        hist.environment_dimensions = environment_dimensions
        hist.environment_shape = environment_shape
        hist.environment_source_position = environment_source_position
        hist.environment_source_radius = environment_source_radius
        hist.environment_layer_labels = environment_layer_labels
        hist.agent_thresholds = agent_thresholds

        # Saving simulation dfs back
        hist._simulation_dfs = simulation_dfs

        return hist


    def plot(self,
             sim_id: int = 0,
             ax: plt.Axes | None = None
             ) -> None:
        '''
        Function to plot a the trajectory of a given simulation.
        An ax can be use to plot it on.

        Parameters
        ----------
        sim_id : int, default=0
            The id of the simulation to plot.
        ax : plt.Axes, optional
            The ax on which to plot the path. (If not provided, a new axis will be created)
        '''
        # TODO: Setup 3D plotting
        assert self.environment_dimensions == 2, "Plotting function only available for 2D environments for now..."

        # Generate ax is not provided
        if ax is None:
            _, ax = plt.subplots(figsize=(18,3))

        # Retrieving sim
        sim = self.simulation_dfs[sim_id]

        # Plot setup
        env_shape = self.environment_shape
        ax.imshow(np.zeros(self.environment_shape), cmap='Greys', zorder=-100)
        ax.set_xlim(0, env_shape[1])
        ax.set_ylim(env_shape[0], 0)

        # Start
        start_coord = sim[['x', 'y']].to_numpy()[0]
        ax.scatter(start_coord[0], start_coord[1], c='green', label='Start')

        # Source circle
        goal_circle = Circle(self.environment_source_position[::-1], self.environment_source_radius, color='r', fill=False, label='Source')
        ax.add_patch(goal_circle)

        # Until step
        seq = sim[['x','y']].to_numpy()

        # Path
        ax.plot(seq[:,0], seq[:,1], zorder=-1, c='black', label='Path')

        # Layer observations
        if self.environment_layer_labels is not None:
            obs_layer = sim[['layer']][1:].to_numpy()
            layer_colors = np.array(list(colors.TABLEAU_COLORS.values()))

            for layer_i, layer_label in enumerate(self.environment_layer_labels[1:]):
                layer_i += 1
                layer_mask = (obs_layer == layer_i)[:,0] # Reshaping to a single vector and not an n by 1 array
                ax.scatter(seq[1:][layer_mask,0], seq[1:][layer_mask,1], # X, Y
                           marker='x',
                           color=layer_colors[(layer_i-1) % len(layer_colors)], # Looping over the colors in case there are more layers than colors
                           zorder=2,
                           label=layer_label)

        # Process odor cues
        odor_cues = sim['o'][1:].to_numpy()
        observation_ids = None
        if self.environment.has_layers and len(self.agent_thresholds.shape) == 2:
            layer_ids = sim[['layer']][1:].to_numpy()
            action_layer_thresholds = self.agent_thresholds[layer_ids]
            observation_ids = np.argwhere((odor_cues[:,None] >= action_layer_thresholds[:,:-1]) & (odor_cues[:,None] < action_layer_thresholds[:,1:]))[:,1]
        else:
            # Setting observation ids
            observation_ids = np.argwhere((odor_cues[:,None] >= self.agent_thresholds[:-1][None,:]) & (odor_cues[:,None] < self.agent_thresholds[1:][None,:]))[:,1]

        # Check whether the odor detection is binary or by level
        odor_bins = self.agent_thresholds.shape[-1] - 1
        if odor_bins > 2:
            odor_levels = np.arange(odor_bins - 1) + 1
            for level in odor_levels:
                cues_at_level = (observation_ids == level)
                ax.scatter(seq[1:][cues_at_level,0], seq[1:][cues_at_level,1],
                           zorder=1,
                           alpha=(level / odor_bins),
                           label=f'Sensed level {level}')
        else:
            something_sensed = (observation_ids == 1)
            ax.scatter(seq[1:][something_sensed,0], seq[1:][something_sensed,1],
                       zorder=1,
                       label='Something observed')

        # Generate legend
        ax.legend()


    def plot_runtimes(self,
                      ax: plt.Axes | None = None
                      ) -> None:
        '''
        Function to plot the runtimes over the iterations.

        Parameters
        ----------
        ax : plt.Axes, optional
            The ax on which to plot the path. (If not provided, a new axis will be created)
        '''
        # Generate ax is not provided
        if ax is None:
            _, ax = plt.subplots(figsize=(18,3))

        # Computing differences
        timestamp_differences_ms = np.diff(np.array([int(ts.strftime('%H%M%S%f')) for ts in self.timestamps])) / 1000

        # Actual plot
        ax.plot(timestamp_differences_ms)

        # Axes
        ax.set_xlabel('Iteration')
        ax.set_ylabel('Runtime (ms)')


    def plot_successes(self,
                       ax: plt.Axes | None = None
                       ) -> None:
        '''
        Function to plot a 2D map of whether a given starting point was successfull or not (and whether it died early).

        Parameters
        ----------
        ax : plt.Axes, optional
            The ax on which to plot the path. (If not provided, a new axis will be created)
        '''
        assert self.environment_dimensions == 2, "Only implemented for 2D environments..."

        # Generate ax is not provided
        if ax is None:
            _, ax = plt.subplots(figsize=(18,3))

        # Setting up an empty grid of the starting points
        start_points_grid = np.zeros(self.environment_shape)

        # Compute the successful, failed and the ones that reached the horizon
        success_points = self.start_points[self.successful_simulation]
        failed_points = self.start_points[~self.successful_simulation]
        failed_not_at_horizon_points = self.start_points[~self.successful_simulation & ~self.simulations_at_horizon]

        start_points_grid[failed_points[:,0], failed_points[:,1]] = -1
        start_points_grid[success_points[:,0], success_points[:,1]] = 1

        ax.imshow(start_points_grid, cmap='RdBu')

        # The crosses where the points did not reach the horizon
        ax.scatter(failed_not_at_horizon_points[:,1], failed_not_at_horizon_points[:,0], marker='x', color='black', s=10, label='Died early')
        ax.legend()

done_count property

Returns how many simulations are terminated (whether they reached the source or not).

general_analysis_df property

A Pandas DataFrame analyzing the results of the simulations. Summarizing the performance of all the simulations with the following metrics:

  • converged: Whether or not the simulation reached the source
  • reached_horizon: Whether the failed simulation reached to horizon
  • steps_taken: The amount of steps the agent took to reach the source, (horizon if the simulation did not reach the source)
  • discounted_rewards: The discounted reward received by the agent over the course of the simulation
  • extra_steps: The amount of extra steps compared to the optimal trajectory
  • t_min_over_t: Normalized version of the extra steps measure, where it tends to 1 the least amount of time the agent took to reach the source compared to an optimal trajectory.

For the measures (converged, steps_taken, discounted_rewards, extra_steps, t_min_over_t), the average and standard deviations are computed in rows at the top.

runs_analysis_df property

A Pandas DataFrame analyzing the results of the simulations. It aggregates the simulations in single rows, recording:

  • : The starting positions at the given axis
  • optimal_steps_count: The minimal amount of steps to reach the source
  • converged: Whether or not the simulation reached the source
  • reached_horizon: Whether the failed simulation reached to horizon
  • steps_taken: The amount of steps the agent took to reach the source, (horizon if the simulation did not reach the source)
  • discounted_rewards: The discounted reward received by the agent over the course of the simulation
  • extra_steps: The amount of extra steps compared to the optimal trajectory
  • t_min_over_t: Normalized version of the extra steps measure, where it tends to 1 the least amount of time the agent took to reach the source compared to an optimal trajectory.

simulation_dfs property

A list of the pandas DataFrame where each dataframe is a single simulation history. Each row is a different time instant of simulation process with each column being:

  • time (of the simulation data)
  • [position] (z,) y, x OR x0, x1, ... xn
  • (layer)
  • [movement] (dz,) dy, dx OR dx0, dx1, ... dxn
  • o (pure, not thresholded)
  • reached_source (boolean)

simulations_at_horizon property

Returns a boolean array of which simulations reached the horizon.

success_count property

Returns how many simulations reached the source.

summary property

A string summarizing the performances of all the simulations. The metrics used are averages of:

  • Step count
  • Extra steps
  • Discounted rewards
  • Tmin / T

Along with the respective the standard deviations and equally for only for the successful simulations.

add_step(actions, next_positions, observations, reached_source, interupt)

Function to add a step in the simulation history.

Parameters:

Name Type Description Default
actions ndarray

The actions that were taken by the agents.

required
next_positions ndarray

The positions that were reached by the agents after having taken actions.

required
observations ndarray

The observations the agents receive after having taken actions.

required
reached_source ndarray

A boolean array of whether each agent has reached the source or not.

required
interupt ndarray

A boolean array of whether each agent has to be terminated even if it hasnt reached the source yet.

required
Source code in olfactory_navigation/simulation.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def add_step(self,
             actions: np.ndarray,
             next_positions: np.ndarray,
             observations: np.ndarray,
             reached_source: np.ndarray,
             interupt: np.ndarray
             ) -> None:
    '''
    Function to add a step in the simulation history.

    Parameters
    ----------
    actions : np.ndarray
        The actions that were taken by the agents.
    next_positions : np.ndarray
        The positions that were reached by the agents after having taken actions.
    observations : np.ndarray
        The observations the agents receive after having taken actions.
    reached_source : np.ndarray
        A boolean array of whether each agent has reached the source or not.
    interupt : np.ndarray
        A boolean array of whether each agent has to be terminated even if it hasnt reached the source yet.
    '''
    self._simulation_dfs = None

    # Time tracking
    self.timestamps.append(datetime.now())

    # Check if environment if layered and/or 3D
    layered = 0 if self.environment_layer_labels is None else 1

    # Handle case cupy arrays are provided
    if gpu_support:
        actions = actions if cp.get_array_module(actions) == np else cp.asnumpy(actions)
        next_positions = next_positions if cp.get_array_module(next_positions) == np else cp.asnumpy(next_positions)
        observations = observations if cp.get_array_module(observations) == np else cp.asnumpy(observations)
        reached_source = reached_source if cp.get_array_module(reached_source) == np else cp.asnumpy(reached_source)
        interupt = interupt if cp.get_array_module(interupt) == np else cp.asnumpy(interupt)

    # Actions tracking
    action_all_sims = np.full((self.n, (layered + self.environment_dimensions)), fill_value=-1)
    action_all_sims[self._running_sims] = actions
    self.actions.append(action_all_sims)

    # Next states tracking
    next_position_all_sims = np.full((self.n, self.environment_dimensions), fill_value=-1)
    next_position_all_sims[self._running_sims] = next_positions
    self.positions.append(next_position_all_sims)

    # Observation tracking
    observation_all_sims = np.full((self.n,), fill_value=-1, dtype=float)
    observation_all_sims[self._running_sims] = observations
    self.observations.append(observation_all_sims)

    # Recording at which step the simulation is done if it is done and whether it reached the source
    self.done_at_step[self._running_sims[reached_source | interupt]] = len(self.positions)
    self.reached_source[self._running_sims[reached_source]] = True

    # Updating the list of running sims
    self._running_sims = self._running_sims[~reached_source & ~interupt]

compute_distance_to_source()

Function to compute the optimal distance to the source of each starting point according to the optimal_distance_metric attribute.

Returns:

Name Type Description
distance ndarray

The optimal distances to the source point.

Source code in olfactory_navigation/simulation.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def compute_distance_to_source(self) -> np.ndarray:
    '''
    Function to compute the optimal distance to the source of each starting point according to the optimal_distance_metric attribute.

    Returns
    -------
    distance : np.ndarray
        The optimal distances to the source point.
    '''
    point = self.start_points

    # Handling the case we have a single point
    is_single_point = (len(point.shape) == 1)
    if is_single_point:
        point = point[None,:]

    # Computing dist
    dist = None
    # if self.optimal_distance_metric == 'manhattan': # TODO Allow for other metrics to be used
    dist = np.sum(np.abs(self.environment_source_position[None,:] - point), axis=-1) - self.environment_source_radius

    if dist is None: # Meaning it was not computed
        raise NotImplementedError('This distance metric has not yet been implemented')

    return float(dist[0]) if is_single_point else dist

load_from_file(file, environment=False, agent=False) classmethod

Function to load the simulation history from a file. This can be useful to use the plot functions on the simulations saved in succh file.

The environment and agent can provided as a backup in the case they cannot be loaded from the file.

Parameters:

Name Type Description Default
file str

A file (with the path) of the simulation histories csv. (the analysis file cannot be used for this)

required
environment bool or Environment

If set to True, it will try to load the environment that was used for the simulation (if the save path is available). Or, an environment instance to be linked with the simulation history object.

False
agent bool or Agent

If set to True, it will try to load the agent that was used for the simulation (if the save path is available). An agent instance to be linked with the simulation history object.

False

Returns:

Name Type Description
hist SimulationHistory

The loaded instance of a simulation history object.

Source code in olfactory_navigation/simulation.py
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
@classmethod
def load_from_file(cls,
                   file: str,
                   environment: bool | Environment = False,
                   agent: bool | Agent = False
                   ) -> 'SimulationHistory':
    '''
    Function to load the simulation history from a file.
    This can be useful to use the plot functions on the simulations saved in succh file.

    The environment and agent can provided as a backup in the case they cannot be loaded from the file.

    Parameters
    ----------
    file : str
        A file (with the path) of the simulation histories csv. (the analysis file cannot be used for this)
    environment : bool or Environment, default=False
        If set to True, it will try to load the environment that was used for the simulation (if the save path is available).
        Or, an environment instance to be linked with the simulation history object.
    agent : bool or Agent, default=False
        If set to True, it will try to load the agent that was used for the simulation (if the save path is available).
        An agent instance to be linked with the simulation history object.

    Returns
    -------
    hist : SimulationHistory
        The loaded instance of a simulation history object.
    '''
    # Retrieving columns
    with open(file, 'r') as f:
        header = f.readline()
    columns = header.replace('\n','').split(',')

    # Setting the datatypes of columns
    column_dtypes = {col: float for col in columns}
    column_dtypes['time'] = int
    if 'layer' in columns:
        column_dtypes['layer'] = int
    column_dtypes['timestamps'] = str
    column_dtypes['environment'] = str
    column_dtypes['agent'] = str

    # Retrieving the combined dataframe
    combined_df = pd.read_csv(file, dtype=column_dtypes)

    # Retrieving horizon and reward discount
    horizon = int(combined_df['horizon'][0])
    reward_discount = combined_df['reward_discount'][0]

    # Retrieving environment
    if (not isinstance(environment, Environment)) and (environment == True):
        environment_name = combined_df['environment'][0]
        environment_path = combined_df['environment'][1]

        environment_path_check = (environment_path is not None) and (not np.isnan(environment_path))
        assert environment_path_check, "Environment was not saved at the time of the saving of the simulation history. Input an environment to the environment parameter or toggle the parameter to False."

        try:
            environment = Environment.load(environment_path)
        except:
            print(f'Failed to retrieve "{environment_name}" environment from memory')

    # Retrieving agent
    if (not isinstance(agent, Agent)) and (agent == True):
        agent_name = combined_df['environment'][0]
        agent_class = combined_df['environment'][1]
        agent_path = combined_df['environment'][2]

        agent_path_check = (agent_path is not None) and (not np.isnan(agent_path))
        assert agent_path_check, "Agent was not saved at the time of the saving of the simulation history. Input an agent to the agent parameter or toggle the parameter to False."

        try:
            class_instance = None
            for (class_name, class_obj) in inspect.getmembers(sys.modules[__name__], inspect.isclass):
                if class_name == agent_class:
                    class_instance = class_obj
                    break
            agent = class_instance.load(combined_df['agent'][2])
        except:
            print(f'Failed to retrieve "{agent_name}" agent from memory')

    # Other attributes
    environment_dimensions = int(combined_df['environment'][2])
    environment_shape = tuple([int(axis_shape) for axis_shape in combined_df['environment'][3].split('_')])
    environment_source_position = np.array([float(pos_axis) for pos_axis in combined_df['environment'][4].split('_')])
    environment_source_radius = float(combined_df['environment'][5])
    layer_entery = combined_df['environment'][6]
    environment_layer_labels = (None if ((not isinstance(layer_entery, str)) or (len(layer_entery) == 0)) else layer_entery.split('&'))

    # Processing the threshold string
    thresholds_string = combined_df['agent'][3]
    if '-' in thresholds_string:
        rows_thresholds_string = thresholds_string.split('-')
        layer_thresholds = []
        for row in rows_thresholds_string:
            layer_thresholds.append([float(item) for item in row.split('_')])
        agent_thresholds = np.array(layer_thresholds)

    else:
        agent_thresholds = np.array([float(item) for item in thresholds_string.split('_')])

    # Columns to retrieve
    columns = [col for col in columns if col not in ['reward_discount', 'environment', 'agent']]

    # Checking how many dimensions there are
    has_layers = (((len(columns) - 5) % 2) == 1)
    dimensions = int((len(columns) - 5) / 2)

    # Recreation of list of simulations
    sim_start_rows = np.argwhere(combined_df[['reached_source']].isnull())[1:,0].tolist()
    n = (len(sim_start_rows) + 1)

    simulation_arrays = np.split(combined_df[columns].to_numpy(), sim_start_rows)
    simulation_dfs = [pd.DataFrame(sim_array, columns=columns) for sim_array in simulation_arrays]

    # Making a combined numpy array with all the simulations
    sizes = np.array([len(sim_array) for sim_array in simulation_arrays])
    max_length = sizes.max()
    paddings = max_length - sizes

    padded_simulation_arrays = [np.pad(sim_arr, ((0,pad),(0,0)), constant_values=-1) for sim_arr, pad in zip(simulation_arrays, paddings)]
    all_simulation_arrays = np.array(padded_simulation_arrays).transpose((1,0,2))

    # Timeshift
    time_shift = all_simulation_arrays[0,:,0].astype(int)

    # Gathering start states
    start_points = all_simulation_arrays[0,:,1:(1+dimensions)].astype(int)

    # Recreating action, state and observations
    positions = all_simulation_arrays[1:, :, 1:(1+dimensions)]
    actions = all_simulation_arrays[1:, :, (1+dimensions):((1+dimensions) + (1 if has_layers else 0) + dimensions)]
    observations = all_simulation_arrays[1:, :, ((1+dimensions) + (1 if has_layers else 0) + dimensions)]
    reached_source = np.array([(df['reached_source'][len(df)-1] == 1) for df in simulation_dfs])
    done_at_step = np.where((sizes-1 < horizon), sizes-1, -1)

    # Building SimulationHistory instance
    hist = cls.__new__(cls)

    hist.n = len(start_points)
    hist.environment = environment.cpu_version if isinstance(environment, Environment) else None
    hist.agent = agent.cpu_version if isinstance(agent, Agent) else None
    hist.time_shift = time_shift
    hist.horizon = horizon
    hist.reward_discount = reward_discount
    hist.start_time = datetime.strptime(combined_df['timestamps'][0], '%Y%m%d_%H%M%S%f')

    hist.start_points = start_points
    hist._running_sims = None

    hist.positions = [*positions]
    hist.actions = [*actions]
    hist.observations = [*observations]
    hist.reached_source = reached_source
    hist.done_at_step = done_at_step
    hist.timestamps = [datetime.strptime(ts, '%H%M%S%f') for ts in combined_df['timestamps'][1:max_length]]

    # Other attributes
    hist.environment_dimensions = environment_dimensions
    hist.environment_shape = environment_shape
    hist.environment_source_position = environment_source_position
    hist.environment_source_radius = environment_source_radius
    hist.environment_layer_labels = environment_layer_labels
    hist.agent_thresholds = agent_thresholds

    # Saving simulation dfs back
    hist._simulation_dfs = simulation_dfs

    return hist

plot(sim_id=0, ax=None)

Function to plot a the trajectory of a given simulation. An ax can be use to plot it on.

Parameters:

Name Type Description Default
sim_id int

The id of the simulation to plot.

0
ax Axes

The ax on which to plot the path. (If not provided, a new axis will be created)

None
Source code in olfactory_navigation/simulation.py
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
def plot(self,
         sim_id: int = 0,
         ax: plt.Axes | None = None
         ) -> None:
    '''
    Function to plot a the trajectory of a given simulation.
    An ax can be use to plot it on.

    Parameters
    ----------
    sim_id : int, default=0
        The id of the simulation to plot.
    ax : plt.Axes, optional
        The ax on which to plot the path. (If not provided, a new axis will be created)
    '''
    # TODO: Setup 3D plotting
    assert self.environment_dimensions == 2, "Plotting function only available for 2D environments for now..."

    # Generate ax is not provided
    if ax is None:
        _, ax = plt.subplots(figsize=(18,3))

    # Retrieving sim
    sim = self.simulation_dfs[sim_id]

    # Plot setup
    env_shape = self.environment_shape
    ax.imshow(np.zeros(self.environment_shape), cmap='Greys', zorder=-100)
    ax.set_xlim(0, env_shape[1])
    ax.set_ylim(env_shape[0], 0)

    # Start
    start_coord = sim[['x', 'y']].to_numpy()[0]
    ax.scatter(start_coord[0], start_coord[1], c='green', label='Start')

    # Source circle
    goal_circle = Circle(self.environment_source_position[::-1], self.environment_source_radius, color='r', fill=False, label='Source')
    ax.add_patch(goal_circle)

    # Until step
    seq = sim[['x','y']].to_numpy()

    # Path
    ax.plot(seq[:,0], seq[:,1], zorder=-1, c='black', label='Path')

    # Layer observations
    if self.environment_layer_labels is not None:
        obs_layer = sim[['layer']][1:].to_numpy()
        layer_colors = np.array(list(colors.TABLEAU_COLORS.values()))

        for layer_i, layer_label in enumerate(self.environment_layer_labels[1:]):
            layer_i += 1
            layer_mask = (obs_layer == layer_i)[:,0] # Reshaping to a single vector and not an n by 1 array
            ax.scatter(seq[1:][layer_mask,0], seq[1:][layer_mask,1], # X, Y
                       marker='x',
                       color=layer_colors[(layer_i-1) % len(layer_colors)], # Looping over the colors in case there are more layers than colors
                       zorder=2,
                       label=layer_label)

    # Process odor cues
    odor_cues = sim['o'][1:].to_numpy()
    observation_ids = None
    if self.environment.has_layers and len(self.agent_thresholds.shape) == 2:
        layer_ids = sim[['layer']][1:].to_numpy()
        action_layer_thresholds = self.agent_thresholds[layer_ids]
        observation_ids = np.argwhere((odor_cues[:,None] >= action_layer_thresholds[:,:-1]) & (odor_cues[:,None] < action_layer_thresholds[:,1:]))[:,1]
    else:
        # Setting observation ids
        observation_ids = np.argwhere((odor_cues[:,None] >= self.agent_thresholds[:-1][None,:]) & (odor_cues[:,None] < self.agent_thresholds[1:][None,:]))[:,1]

    # Check whether the odor detection is binary or by level
    odor_bins = self.agent_thresholds.shape[-1] - 1
    if odor_bins > 2:
        odor_levels = np.arange(odor_bins - 1) + 1
        for level in odor_levels:
            cues_at_level = (observation_ids == level)
            ax.scatter(seq[1:][cues_at_level,0], seq[1:][cues_at_level,1],
                       zorder=1,
                       alpha=(level / odor_bins),
                       label=f'Sensed level {level}')
    else:
        something_sensed = (observation_ids == 1)
        ax.scatter(seq[1:][something_sensed,0], seq[1:][something_sensed,1],
                   zorder=1,
                   label='Something observed')

    # Generate legend
    ax.legend()

plot_runtimes(ax=None)

Function to plot the runtimes over the iterations.

Parameters:

Name Type Description Default
ax Axes

The ax on which to plot the path. (If not provided, a new axis will be created)

None
Source code in olfactory_navigation/simulation.py
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
def plot_runtimes(self,
                  ax: plt.Axes | None = None
                  ) -> None:
    '''
    Function to plot the runtimes over the iterations.

    Parameters
    ----------
    ax : plt.Axes, optional
        The ax on which to plot the path. (If not provided, a new axis will be created)
    '''
    # Generate ax is not provided
    if ax is None:
        _, ax = plt.subplots(figsize=(18,3))

    # Computing differences
    timestamp_differences_ms = np.diff(np.array([int(ts.strftime('%H%M%S%f')) for ts in self.timestamps])) / 1000

    # Actual plot
    ax.plot(timestamp_differences_ms)

    # Axes
    ax.set_xlabel('Iteration')
    ax.set_ylabel('Runtime (ms)')

plot_successes(ax=None)

Function to plot a 2D map of whether a given starting point was successfull or not (and whether it died early).

Parameters:

Name Type Description Default
ax Axes

The ax on which to plot the path. (If not provided, a new axis will be created)

None
Source code in olfactory_navigation/simulation.py
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
def plot_successes(self,
                   ax: plt.Axes | None = None
                   ) -> None:
    '''
    Function to plot a 2D map of whether a given starting point was successfull or not (and whether it died early).

    Parameters
    ----------
    ax : plt.Axes, optional
        The ax on which to plot the path. (If not provided, a new axis will be created)
    '''
    assert self.environment_dimensions == 2, "Only implemented for 2D environments..."

    # Generate ax is not provided
    if ax is None:
        _, ax = plt.subplots(figsize=(18,3))

    # Setting up an empty grid of the starting points
    start_points_grid = np.zeros(self.environment_shape)

    # Compute the successful, failed and the ones that reached the horizon
    success_points = self.start_points[self.successful_simulation]
    failed_points = self.start_points[~self.successful_simulation]
    failed_not_at_horizon_points = self.start_points[~self.successful_simulation & ~self.simulations_at_horizon]

    start_points_grid[failed_points[:,0], failed_points[:,1]] = -1
    start_points_grid[success_points[:,0], success_points[:,1]] = 1

    ax.imshow(start_points_grid, cmap='RdBu')

    # The crosses where the points did not reach the horizon
    ax.scatter(failed_not_at_horizon_points[:,1], failed_not_at_horizon_points[:,0], marker='x', color='black', s=10, label='Died early')
    ax.legend()

save(file=None, folder=None, save_analysis=True, save_components=False)

Function to save the simulation history to a csv file in a given folder. Additionally, an analysis of the runs can be saved if the save_analysis is enabled. The environment and agent used can be saved in the saved folder by enabling the 'save_component' parameter.

Parameters:

Name Type Description Default
file str

The name of the file the simulation histories will be saved to. If it is not provided, it will be by default "Simulations--n_--horizon_.csv"

None
folder str

Folder to save the simulation histories to. If the folder name is not provided the current folder will be used.

None
save_analysis bool

Whether to save an additional csv file with an analysis of the runs of the simulation. It will contain the amount of steps taken, the amount of extra steps compared to optimality, the discounted rewards and the ratio between optimal trajectory and the steps taken. The means and standard deviations of all the runs are also computed. The file will have the same name as the simulation history file with an additional '-analysis' tag at the end.

True
save_components bool

Whether or not to save the environment and agent along with the simulation histories in the given folder.

False
Source code in olfactory_navigation/simulation.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
def save(self,
         file: str | None = None,
         folder: str | None = None,
         save_analysis: bool = True,
         save_components: bool = False
         ) -> None:
    '''
    Function to save the simulation history to a csv file in a given folder.
    Additionally, an analysis of the runs can be saved if the save_analysis is enabled.
    The environment and agent used can be saved in the saved folder by enabling the 'save_component' parameter.

    Parameters
    ----------
    file : str, optional
        The name of the file the simulation histories will be saved to.
        If it is not provided, it will be by default "Simulations-<env_name>-n_<sim_count>-<sim_start_timestamp>-horizon_<max_sim_length>.csv"
    folder : str, optional
        Folder to save the simulation histories to.
        If the folder name is not provided the current folder will be used.
    save_analysis : bool, default=True
        Whether to save an additional csv file with an analysis of the runs of the simulation.
        It will contain the amount of steps taken, the amount of extra steps compared to optimality, the discounted rewards and the ratio between optimal trajectory and the steps taken.
        The means and standard deviations of all the runs are also computed.
        The file will have the same name as the simulation history file with an additional '-analysis' tag at the end.
    save_components : bool, default=False
        Whether or not to save the environment and agent along with the simulation histories in the given folder.
    '''
    assert (self.environment is not None) and (self.agent is not None), "Function not available, the agent and/or the environment is not set."

    # Handle file name
    if file is None:
        env_name = f's_' + '_'.join([str(axis_shape) for axis_shape in self.environment_shape])
        file = f'Simulations-{env_name}-n_{self.n}-{self.start_time.strftime("%Y%m%d_%H%M%S")}-horizon_{len(self.positions)}.csv'

    if not file.endswith('.csv'):
        file += '.csv'

    # Handle folder
    if folder is None:
        folder = './'

    if '/' not in folder:
        folder = './' + folder

    if not os.path.exists(folder):
        os.mkdir(folder)

    if not folder.endswith('/'):
        folder += '/'

    # Save components if requested
    if save_components:
        if (self.environment.saved_at is None) or (folder not in self.environment.saved_at):
            self.environment.save(folder=folder)

        if (self.agent.saved_at is None) or (folder not in self.agent.saved_at):
            self.agent.save(folder=folder)

    # Create csv file
    combined_df = pd.concat(self.simulation_dfs)

    # Adding other useful info
    padding = [None] * len(combined_df)
    combined_df['timestamps'] = [self.start_time.strftime('%Y%m%d_%H%M%S%f')] + [ts.strftime('%H%M%S%f') for ts in self.timestamps] + padding[:-(len(self.timestamps)+1)]
    combined_df['horizon'] = [self.horizon] + padding[:-1]
    combined_df['reward_discount'] = [self.reward_discount] + padding[:-1]

    environment_info = [
        self.environment.name,
        self.environment.saved_at,
        str(self.environment_dimensions), # int
        '_'.join(str(axis_size) for axis_size in self.environment_shape),
        '_'.join(str(axis_position) for axis_position in self.environment_source_position),
        str(self.environment_source_radius), # float
        '' if (self.environment_layer_labels is None) else '&'.join(self.environment_layer_labels) # Using '&' as splitter as '_' could be used in the labels themselves
    ]
    combined_df['environment'] = (environment_info + padding[:-len(environment_info)])

    # Converting the thresholds array to a string to be saved
    thresholds_string = ''
    if len(self.agent_thresholds.shape) == 2:
        thresholds_string = '-'.join(['_'.join([str(item) for item in row]) for row_i, row in enumerate(self.agent_thresholds[:,1:-1])])
    else:
        thresholds_string = '_'.join([str(item) for item in self.agent_thresholds])

    agent_info = [
        self.agent.name,
        self.agent.class_name,
        self.agent.saved_at,
        thresholds_string
    ]
    combined_df['agent'] = (agent_info + padding[:-len(agent_info)])

    # Saving csv
    combined_df.to_csv(folder + file, index=False)

    print(f'Simulations saved to: {folder + file}')

    if save_analysis:
        runs_analysis_file_name = file.replace('.csv', '-runs_analysis.csv')
        self.runs_analysis_df.to_csv(folder + runs_analysis_file_name)
        print(f"Simulation's runs analysis saved to: {folder + runs_analysis_file_name}")

        general_analysis_file_name = file.replace('.csv', '-general_analysis.csv')
        self.general_analysis_df.to_csv(folder + general_analysis_file_name)
        print(f"Simulation's general analysis saved to: {folder + general_analysis_file_name}")

run_test(agent, n=None, start_points=None, environment=None, time_shift=0, time_loop=True, horizon=1000, initialization_values={}, reward_discount=0.99, print_progress=True, print_stats=True, print_warning=True, use_gpu=False, batches=-1)

Function to run n simulations for a given agent in its environment (or a given modified environment). The simulations start either from random start points or provided trough the start_points parameter. The simulation can have shifted initial times (in the olfactory simulation).

The simulation will run for at most 'horizon' steps, after which the simulations will be considered failed.

Some statistics can be printed at end of the simulation with the 'print_stats' parameter. It will print some performance statisitcs about the simulations such as the average discounter reward. The reward discount can be set by the 'reward_discount' parameter.

To speedup the simulations, it can be run on the gpu by toggling the 'use_gpu' parameter. This will have the consequence to send the various arrays to the gpu memory. This will only work if the agent has the support for to work with cupy arrays.

This method returns a SimulationHistory object that saves all the positions the agent went through, the actions the agent took, and the observation the agent received. It also provides the possibility the save the results to a csv file and plot the various trajectories.

Parameters:

Name Type Description Default
agent Agent

The agent to be tested

required
n int

How many simulation to run in parallel. n is optional but it needs to match with what is provided in start_points.

None
start_points ndarray

The starting points of the simulation in 2d space. If not provided, n random points will be generated based on the start probabilities of the environment. Else, the amount of start_points need to match to n, if it is provided.

None
environment Environment

The environment to run the simulations in. By default, the environment linked to the agent will used. This parameter is intended if the environment needs to be modified compared to environment the agent was trained on.

None
time_shift int or ndarray

The time at which to start the olfactory simulation array. It can be either a single value, or n values.

0
time_loop bool

Whether to loop the time if reaching the end. (starts back at 0)

True
horizon int

The amount of steps to run the simulation for before killing the remaining simulations.

1000
initialization_values dict

In the case the agent is to be initialized with custom values, the paramaters to be passed on the initialize_state function can be set here.

{}
reward_discount float

How much a given reward is discounted based on how long it took to get it. It is purely used to compute the Average Discount Reward (ADR) after the simulation.

0.99
print_progress bool

Whether to show a progress bar of what step the simulations are at.

True
print_stats bool

Whether to print the stats at the end of the run.

True
print_warning bool

Whether to print warnings when they occur or not.

True
use_gpu bool

Whether to run the simulations on the GPU or not.

False
batches int

In how many batches the simulations should be run. This is useful in the case there are too many simulations and the memory can fill up. The value of batches=-1 will make it that different batches amount are tried in increasing order if a MemoryError is encountered.

-1

Returns:

Name Type Description
hist SimulationHistory

A SimulationHistory object that tracked all the positions, actions and observations.

Source code in olfactory_navigation/simulation.py
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
def run_test(agent: Agent,
             n: int | None = None,
             start_points: np.ndarray | None = None,
             environment: Environment | None = None,
             time_shift: int | np.ndarray = 0,
             time_loop: bool = True,
             horizon: int = 1000,
             initialization_values: dict = {},
             reward_discount: float = 0.99,
             print_progress: bool = True,
             print_stats: bool = True,
             print_warning: bool = True,
             use_gpu: bool = False,
             batches: int = -1
             ) -> SimulationHistory:
    '''
    Function to run n simulations for a given agent in its environment (or a given modified environment).
    The simulations start either from random start points or provided trough the start_points parameter.
    The simulation can have shifted initial times (in the olfactory simulation).

    The simulation will run for at most 'horizon' steps, after which the simulations will be considered failed.

    Some statistics can be printed at end of the simulation with the 'print_stats' parameter.
    It will print some performance statisitcs about the simulations such as the average discounter reward.
    The reward discount can be set by the 'reward_discount' parameter.

    To speedup the simulations, it can be run on the gpu by toggling the 'use_gpu' parameter.
    This will have the consequence to send the various arrays to the gpu memory.
    This will only work if the agent has the support for to work with cupy arrays.

    This method returns a SimulationHistory object that saves all the positions the agent went through,
    the actions the agent took, and the observation the agent received.
    It also provides the possibility the save the results to a csv file and plot the various trajectories.

    Parameters
    ----------
    agent : Agent
        The agent to be tested
    n : int, optional
        How many simulation to run in parallel.
        n is optional but it needs to match with what is provided in start_points.
    start_points : np.ndarray, optional
        The starting points of the simulation in 2d space.
        If not provided, n random points will be generated based on the start probabilities of the environment.
        Else, the amount of start_points need to match to n, if it is provided.
    environment : Environment, optional
        The environment to run the simulations in.
        By default, the environment linked to the agent will used.
        This parameter is intended if the environment needs to be modified compared to environment the agent was trained on.
    time_shift : int or np.ndarray, default=0
        The time at which to start the olfactory simulation array.
        It can be either a single value, or n values.
    time_loop : bool, default=True
        Whether to loop the time if reaching the end. (starts back at 0)
    horizon : int, default=1000
        The amount of steps to run the simulation for before killing the remaining simulations.
    initialization_values : dict, default={}
        In the case the agent is to be initialized with custom values,
        the paramaters to be passed on the initialize_state function can be set here.
    reward_discount : float, default=0.99
        How much a given reward is discounted based on how long it took to get it.
        It is purely used to compute the Average Discount Reward (ADR) after the simulation.
    print_progress : bool, default=True
        Whether to show a progress bar of what step the simulations are at.
    print_stats : bool, default=True
        Whether to print the stats at the end of the run.
    print_warning : bool, default=True
        Whether to print warnings when they occur or not.
    use_gpu : bool, default=False
        Whether to run the simulations on the GPU or not.
    batches : int, default=-1
        In how many batches the simulations should be run.
        This is useful in the case there are too many simulations and the memory can fill up.
        The value of batches=-1 will make it that different batches amount are tried in increasing order if a MemoryError is encountered.

    Returns
    -------
    hist : SimulationHistory
        A SimulationHistory object that tracked all the positions, actions and observations.
    '''
    # Gathering n
    if n is None:
        if (start_points is None) or (len(start_points.shape) == 1):
            n = 1
        else:
            n = len(start_points)

    # Handle the case an specific environment is given
    if (environment is not None) and print_warning:
        if environment.shape != agent.environment.shape:
            print("[Warning] The provided environment's shape doesn't match the environment has been trained on...")
        print('Using the provided environment, not the agent environment.')
    else:
        environment = agent.environment

    # Timeshift
    if isinstance(time_shift, int):
        time_shift = np.ones(n) * time_shift
    else:
        time_shift = np.array(time_shift)
        assert time_shift.shape == (n,), f"time_shift array has a wrong shape (Given: {time_shift.shape}, expected ({n},))"
    time_shift = time_shift.astype(int)

    # Auto batches selector where the amount of batches increases if a memory error is detected
    if batches < 0:
        all_try_batches = (2**np.arange(np.log2(11000), dtype=int))
        for try_batches in all_try_batches:
            try:
                hist = run_test(agent = agent,
                                n = n,
                                start_points = start_points,
                                environment = environment,
                                time_shift = time_shift,
                                time_loop = time_loop,
                                horizon = horizon,
                                initialization_values = initialization_values,
                                reward_discount = reward_discount,
                                print_progress = print_progress,
                                print_stats = print_stats,
                                print_warning = False, # If there was any, it would have been printed already
                                use_gpu = use_gpu,
                                batches = try_batches)
                return hist
            except MemoryError as e:
                print(f'Memory full: {e}')
                print('Increasing the amount of batches...')

    # If more than one batch is selected, split the starting point arrays by the amounts of simulations in each batch
    elif batches > 1:
        # Computing the amount of simulations to be in each batch
        n_batches = np.array([n / batches] * batches).astype(int)
        n_batches[:(n%batches)] += 1
        n_start = 0

        # Full SimulationHistory object
        combined_hist = None

        # Time tracking
        all_sim_start_ts = datetime.now()

        # Batches loop
        batch_iterator = tqdm(n_batches, desc='Batches') if print_progress else n_batches
        for b_n in batch_iterator:
            b_hist = run_test(agent = agent,
                              n = b_n,
                              start_points = start_points[n_start:n_start+b_n],
                              environment = environment,
                              time_shift = time_shift[n_start:n_start+b_n],
                              time_loop = time_loop,
                              horizon = horizon,
                              initialization_values = initialization_values,
                              reward_discount = reward_discount,
                              print_progress = print_progress,
                              print_stats = False, # Forced false to not print too many things
                              print_warning = False, # If there was any, it would have been printed already
                              use_gpu = use_gpu,
                              batches = 1)
            n_start += b_n

            # Combining SimulationHistory objects
            if combined_hist is None:
                combined_hist = b_hist
            else:
                combined_hist += b_hist

        # Print stats of the complete history is asked
        if print_stats:
            all_sim_end_ts = datetime.now()
            print(f'Simulations done in {(all_sim_end_ts - all_sim_start_ts).total_seconds():.3f}s:')
            print(combined_hist.summary)

        return combined_hist

    # Move things to GPU if needed
    xp = np
    if use_gpu:
        assert gpu_support, f"GPU support is not enabled, the use_gpu option is not available."
        xp = cp

        # Move instances to GPU
        agent = agent.gpu_version
        environment = environment.gpu_version
        time_shift = cp.array(time_shift)

        if start_points is not None:
            start_points = cp.array(start_points)

    # Set start positions
    agent_position = None
    if start_points is not None:
        assert start_points.shape == (n, environment.dimensions), f'The provided start_points are of the wrong shape (expected {environment.dimensions}; received {start_points.shape[1]})'
        agent_position = start_points
    else:
        # Generating random starts
        agent_position = environment.random_start_points(n)

    # Initialize agent's state
    agent.initialize_state(n, **initialization_values)

    # Create simulation history tracker
    hist = SimulationHistory(
        start_points=agent_position,
        environment=environment,
        agent=agent,
        time_shift=time_shift,
        horizon=horizon,
        reward_discount=reward_discount
    )

    # Track begin of simulation ts
    sim_start_ts = datetime.now()

    # Simulation loop
    iterator = trange(horizon) if print_progress else range(horizon)
    for i in iterator:
        # Letting agent choose the action to take based on it's curent state
        action = agent.choose_action()

        # Updating the agent's actual position (hidden to him)
        agent_position = environment.move(pos=agent_position,
                                          movement=(action if not environment.has_layers else action[:,1:])) # Getting only the physical component of the action vector if environment has layers.

        # Get an observation based on the new position of the agent
        observation = environment.get_observation(pos=agent_position,
                                                  time=(time_shift + i),
                                                  layer=(0 if not environment.has_layers else action[:,0])) # Getting the layer information column of the action matrix.

        # Check if the source is reached
        source_reached = environment.source_reached(agent_position)

        # Add the position to the observation if the agent is space aware
        if agent.space_aware:
            observation = xp.hstack((observation[:,None], agent_position))

        # Return the observation to the agent
        update_succeeded = agent.update_state(action=action,
                                              observation=observation,
                                              source_reached=source_reached)
        if update_succeeded is None:
            update_succeeded = xp.ones(len(source_reached) , dtype=bool)

        # Handling the case where simulations have reached the end
        sims_at_end = ((time_shift + i + 1) >= (math.inf if time_loop else environment.timesteps))

        # Agents to terminate
        to_terminate = source_reached | sims_at_end | ~update_succeeded

        # Send the values to the tracker
        hist.add_step(
            actions=action,
            next_positions=agent_position,
            observations=observation[:,0] if agent.space_aware else observation,
            reached_source=source_reached,
            interupt=to_terminate
        )

        # Interupt agents that reached the end
        agent_position = agent_position[~to_terminate]
        time_shift = time_shift[~to_terminate]
        agent.kill(simulations_to_kill=to_terminate)

        # Early stopping if all agents done
        if len(agent_position) == 0:
            break

        # Update progress bar
        if print_progress:
            done_count = hist.done_count
            success_count = hist.success_count
            success_percentage = (success_count/done_count)*100 if done_count > 0 else 100
            dead_percentage = ((done_count-success_count)/done_count)*100 if done_count > 0 else 0
            iterator.set_postfix({
                'done ': f' {done_count}/{n} ({(done_count/n)*100:.1f}%)',
                'success ': f' {success_count}/{done_count} ({success_percentage:.1f}%)',
                'dead ': f' {done_count-success_count}/{done_count} ({dead_percentage:.1f}%)'
            })

    # If requested print the simulation start
    if print_stats:
        sim_end_ts = datetime.now()
        print(f'Simulations done in {(sim_end_ts - sim_start_ts).total_seconds():.3f}s:')
        print(hist.summary)

    return hist